NPOI Vacuum Manifold

Wyatt Clark | Cydny Clark | Alex McClinton

Photo: https://lowell.edu/research/telescopes-and-facilities/npoi/

Quick Overview of Project

Description:

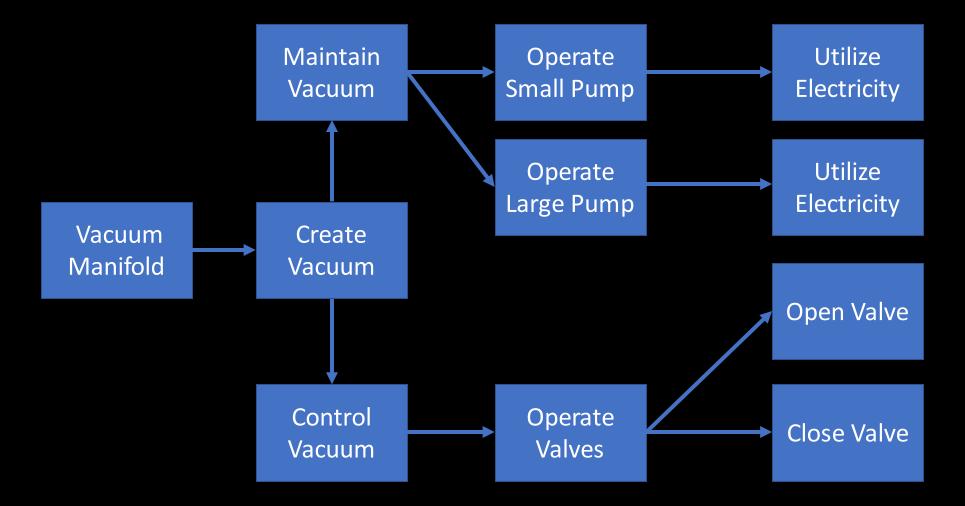
 The Capstone team has been tasked to design, manufacture, install, and validate a new Fast Delay Line vacuum manifold

Requirements:

• Large safety margins, accommodate future expansion, easy to use, eliminates current design flaws

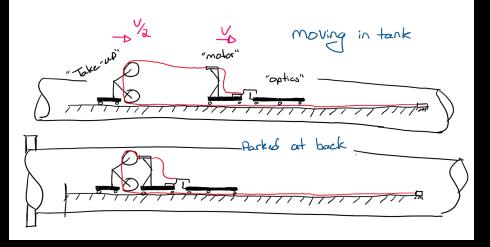
Timeline:

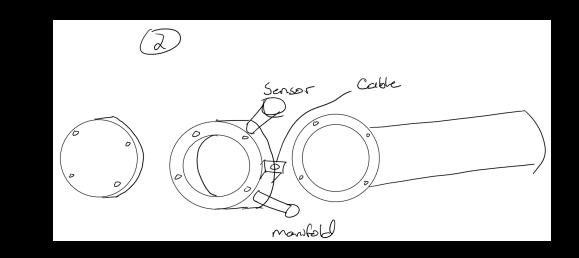
- Deliver operational prototype by December 2021
- Perform system analysis and validation May 2022



Black Box Model

Alex, 10/4/21, NPOI Vacuum Manifold, 21F03


Functional Decomposition

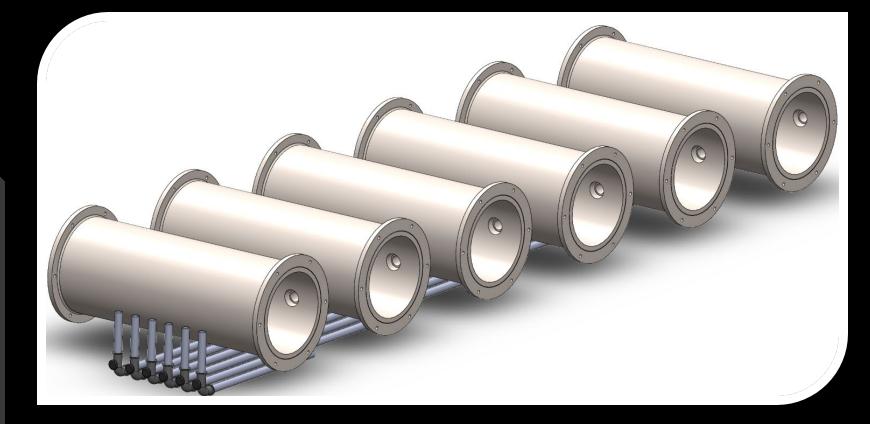

Alex, 10/4/21, NPOI Vacuum Manifold, 21F03

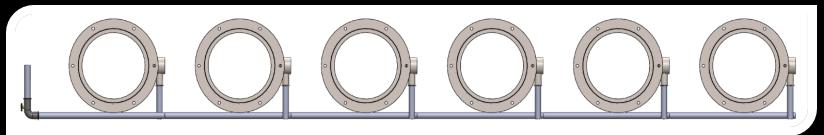
How Concepts Were Generated

- Used black box/decomposition to guide ideas where improvements could be made to manifold
- 2. Start with "white-board" sketches
- 3. Produce 3D CAD concepts for Client

Cydny, 9/13/21, NPOI Vacuum Manifold, 21F03

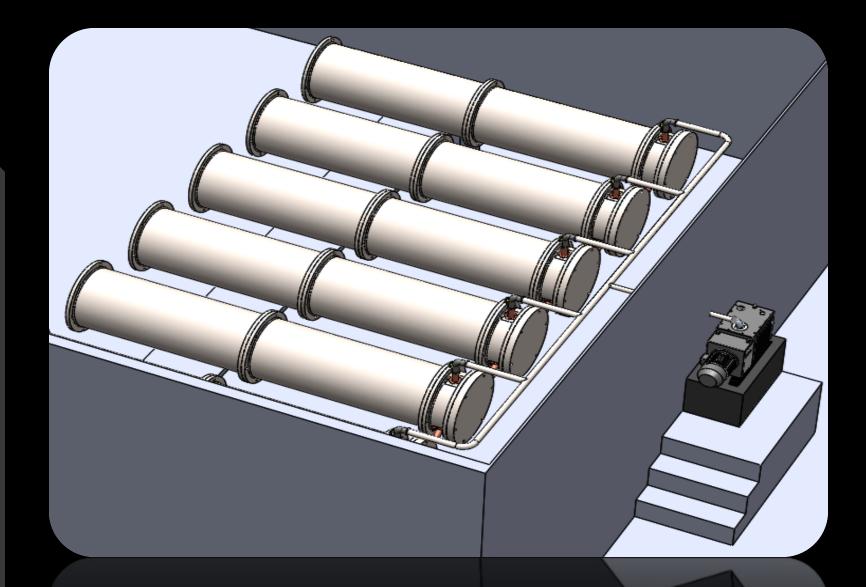
Concept 1


- Back of tank extension connected to stationary bridge support structure
- Advantages: Reduce vibrations by connecting bridge to isolated concrete slabs. End plate storage on bridge for maintenance. Provides more feed through ports.
- **Disadvantages:** Impedes motion of crane, must design bridge, expensive extension pipe.



Cydny, 10/4/21, NPOI Vacuum Manifold, 21F03

Concept 2


- Utilize front electrical feed through, extend manifold to FDL 1 to eliminate bridge
- Advantages: Attached to ground for static stability. No bridge needed to operate valves. Replaces bad electrical feed through.
- Disadvantages: More pipe = more \$, consumes space.

Concept 3

- Same adapter as first concept. Vacuum pump [1] is now in the SID-Lab on rubber isolator
- Advantages: Reduces vibrations from the pump, allows easier pump maintenance.
- Disadvantages: Requires support structure, requires building in two rooms, takes up space.

Alex, 9/13/21, NPOI Vacuum Manifold, 21F03

Concept Evaluation

Image: Failure of Ribbon Cable System Inside FDL

Perform "back-of-envelope" cost analysis of the three leading concepts

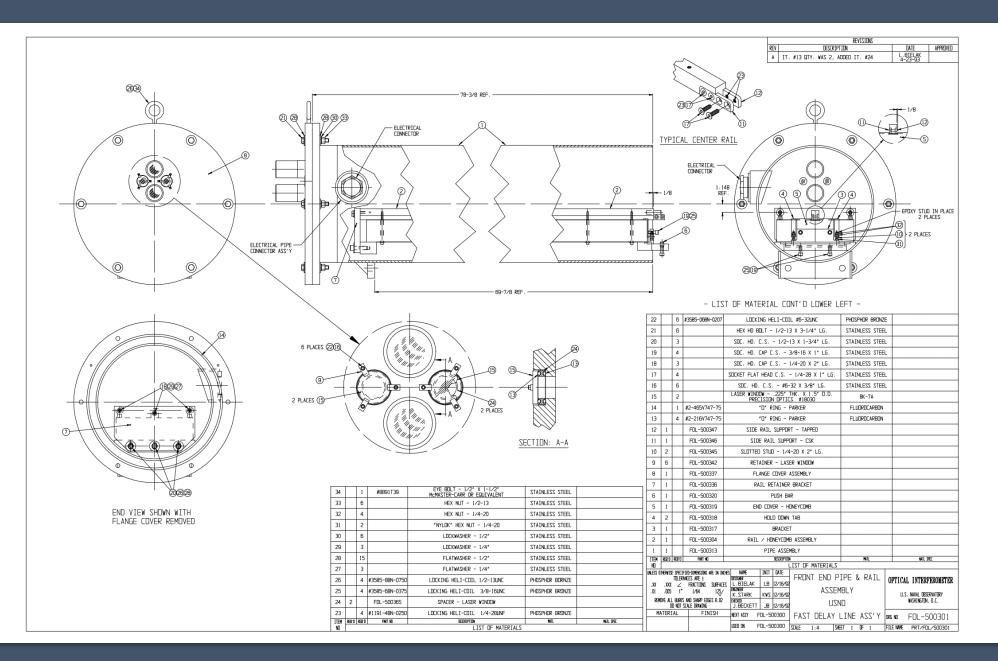
Perform client "show-and-tell" to discuss the advantages of each design

2

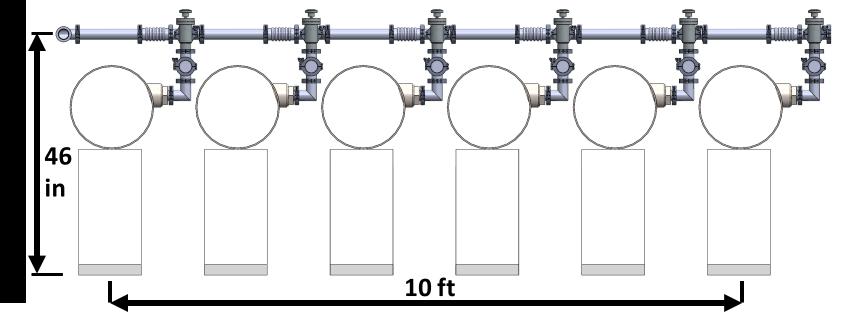
3

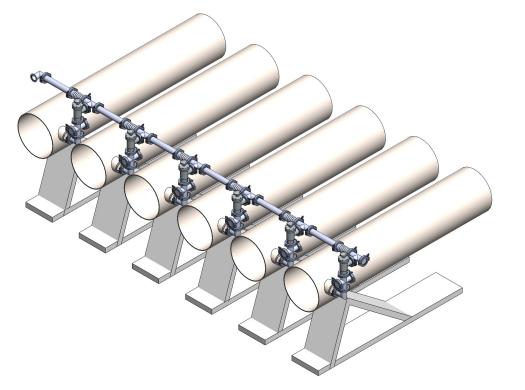
Select leading concept by combination of clients wishes and decision matrix

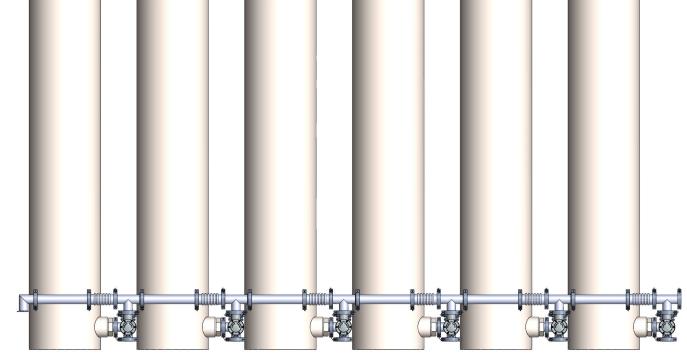
Cydny, 10/4/21, NPOI Vacuum Manifold, 21F03


Decision Matrix

		RAW		WEIGHTED				
Criterion	Weight	Front with bridge						
Material Cost	15%	9		1.35				
Manufactureing Cost	25%	8		2				
Reliablility	50%	8	4					
Assembly	10%	6		0.6				
Totals		31		7.95				
Relative Ran	k	1						


		RAW		WEIGHTED	RAW		WEIGHTED	RAW		WEIGHTED	RAW		WEIGHTED	RAW		WEIGHTED
Criterion	Weight	Back with Bridge		Back to Sid-Lab		Front with bridge			Front long-pipes			Simple front plate				
Material Cost	15%	1		0.15	2		0.3	9		1.35	6		0.9	10		1.5
Manufactureing Cost	25%	1		0.25	2		0.5	8		2	7		1.75	7		1.75
Reliablility	50%	9		4.5	9		4.5	8		4	9		4.5	5		2.5
Assembly	10%	3		0.3	2		0.2	6		0.6	6		0.6	1		0.1
Totals		14		5.2	15		5.5	31		7.95	28		7.75	23		5.85
Relative Ran	¢ (8		7		1		3			5					

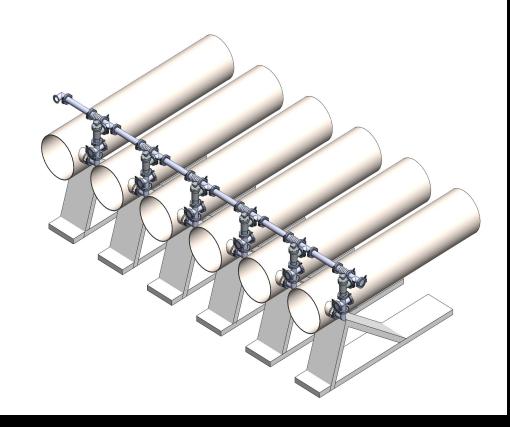

					1											
		RAW		WEIGHTED	RAW		WEIGHTED	RAW		WEIGHTED	RAW		WEIGHTED	RAW		WEIGHTED
Criterion	Weight		Front long pipe under		Front long pipe Over		Giant Lung			Apex Manifold			Move pump to back keep manifold			
Material Cost	15%	6		0.9	6		0.9	1		0.15	6		0.9	2		0.3
Manufactureing Cost	25%	7		1.75	7		1.75	1		0.25	4		1	7		1.75
Reliablility	50%	9		4.5	9		4.5	1		0.5	6		3	3		1.5
Assembly	10%	5		0.5	7		0.7	1		0.1	5		0.5	3		0.3
Totals		27		7.65	29		7.85	4		1	21		5.4	15		3.85
Relative Rank	¢ (4			2			9	9 6		7				



Final Concept

Final Design Criteria for selection

Overview


- Utilizes electrical feed through for interface
- Simple long manifold to reduce cost
- Requires "bridge" to access valves (not shown)

Customer Needs

- Increases safety
- Disconnected from Snoots
- Solves ribbon cable pass-though problem

Engineering Requirements

- Bellows for thermal expansion
- Industry standard interfaces for reliability
- External support structure (not shown) for static rigidity

Budget Planning

Total Cost of Materials For 6 Pipes \$8041

Cost For 1 Pipe \$1340

Total Tax/Shipping Expenses \$1207

Prototype Money \$1500

Spare/Broken Part Money \$1500

Grand Total \$13588

Bill Of Materials										
ltem	Quantity	Unit Cost (USD)	Total Cost (USD)							
QF 50 Blanking Plate [3]	13	20.00	260							
QF 50 Tee [4]	6	146.00	876							
QF 50 Cross [5]	6	220.00	1320							
QF 50 Al Clamp [6]	55	17.00	935							
QF 50 Mitred 90 elbow [7]	7	96.00	672							
QF 50 Valve [8]	0 (reused)	557.00	0							
QF 50 6" long Bellows [9]	6	123.00	738							
QF 50 Center O-Ring Fluorocarbon [10]	55	12.00	660							
Costome 12.5 double nippe QF 50 [11]	6	230.00	1380							
Interface	6	200.00	1200							

Alex, 10/4/21, NPOI Vacuum Manifold, 21F03

References

- [1] GVD 275 (Solidworks CAD model, accessed September 24,2021). https://grabcad.com/library/gvd-275-1
- [2]"Kurt J. Lesker Company | Flange Systems Overview | Vacuum Science Is Our Business." https://www.lesker.com/newweb/flanges/flanges_technicalnotes_overview_1.cfm [Accessed 9,22,2021].
- [3] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/flanges/flanges-kf-blank/part/qf50-200-sb. [Accessed: 03-Oct-2021].
- [4] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/flanges/fittings-kf-tees/part/qf50-200-t. [Accessed: 03-Oct-2021].
- [5] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/flanges/fittings-kf-crosses/part/qf50-200-x. [Accessed: 03-Oct-2021].
- [6] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/newweb/flanges/hardware_kf_clamps_machined.cfm?pgid=al2. [Accessed: 03-Oct-2021].

References

- [7] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/flanges/fittings-kf-elbows/part/qf50-200e90m. [Accessed: 03-Oct-2021].
- [8] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/newweb/valves/anglevalves_bellowssealed_ss_man.cfm?pgid=kf. [Accessed: 03-Oct-2021].
- [9] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/newweb/flanges/bellows_kf_hydraulicallyformed.cfm?pgid=standard. [Accessed: 03-Oct-2021].
- [10] "QF50-200-SB FLANGE, BLA" Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/newweb/flanges/hardware_kf_centeringrings.cfm?pgid=al.[Accessed: 03-Oct-2021].
- [11] "QF50-200-SB FLANGE, BLANK, SS, QF50," Kurt J. Lesker Company. [Online]. Available: https://www.lesker.com/newweb/flanges/nipple_builder.cfm. [Accessed: 03-Oct-2021].

Questions?